

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T1000(E)(M22)T APRIL EXAMINATION

NATIONAL CERTIFICATE

MATHEMATICS N1

(16030121)

22 March 2013 (X-Paper) 09:00-12:00

Calculators may be used.

This question paper consists of 6 pages and a 2-page formula sheet.

DHET

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

-2-

NATIONAL CERTIFICATE MATHEMATICS N1 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a NEW page.
- 5. Use a pencil for drawings.
- ALL calculations must be approximated to THREE decimals.
- Rough calculations may be done at the back of the ANSWER BOOK.
- 8. Write neatly and legibly.

(2) 300 km/h equals ... m.s⁻¹ 1.1.1 1.1 (1) The reciprocal of 20 is ... 1.1.2 (1) Express 380 mm as a percentage of 1 226 mm 1.1.3 Given: $9x^3 - 6x^2 - 3x - 7$ 1.2 (2) \dots are the exponents of x1.2.1 (1) 9 is the ... of x1.2.2 (1) ... is the variable. 1.2.3 (1) ... is the constant term. 1.2.4 (1) The number of terms is ... 1.2.5 [10]

QUESTION 2

2.1 Simplify by only making use of exponential laws:

$$-(6b^{2})^{0} \times \sqrt[4]{\frac{81a^{6}b}{256a^{-2}b^{9}}}$$
 (5)

2.2 Subtract
$$-10x + 12y + 20x^2$$
 from $14x^2 - 10y + 16x$ (3)

2.3 Remove the brackets:

$$(a-2)(a^3+3a^2-5a-6) (5)$$

2.4 Simplify the following logarithms without the use of a calculator:

$$\log_2 64 - 3\log_{10} 100 - \log_3 9 + \log_e e^6$$
 [18]

3.1 Divide
$$2+4x^2-6x+5x^3$$
 by $x+2$ (7)

3.2 Find the factors to the following expressions:

$$3.2.1 63ab - 56ac + 7ad (2)$$

$$3.2.2 3xy - xyd + 12x - 4xd (6)$$

3.3 Simplify:
$$\frac{xy - x^2y^2}{xy} \div \frac{2 - 2xy}{20}$$
 (4)

3.4 Given: $54x^4y^5z^2$, $48x^2y^4z^5$ and $63x^5y^2z^3$

Determine the following:

QUESTION 4

4.1 Solve for x:

$$4(x-2) - (7x-9) + 6 = 2 (4)$$

4.1 Solve for x:

$$4(x-2) - (7x-9) + 6 = 2 (4)$$

- 4.2 The sum of three consecutive numbers is 135. Find the largest number of the three. (4)
- Change the subject of the formula so that the symbol in brackets becomes the new subject:

$$A = 4\pi r^2 \dots (r) \tag{2}$$

4.4 Calculate the value of r in QUESTION 4.3 if
$$A = 10 \text{ mm}$$
 (2) [12]

[26]

5.1 Refer to the graph below to answer the following questions. The graph is not drawn to scale.

5.1.1	Find the gradient of $f(x)$.	(2)
5.1.2	Write down the y-intercept of function $f(x)$.	(1)
5.1.3	Find the x-intercept of function $f(x)$.	(1)
5.1.4	Write the equation of the graph of $f(x)$.	(3)
5.1.5	Name the graph of $f(x)$.	(1)
5.1.6	What is the name of the graph of the function $g(x)$?	(1)
5.1.7	In which quadrant is the graph of the function $g(x)$ drawn?	(1) [10]

6.1 GIVEN:

Make use of the above triangle to calculate the following:

- 6.1.1 The magnitude of x (3)
- 6.1.2 The magnitude of y and give ONE reason (2)
- 6.1.3 The magnitude of z (3)
- Determine the area of a semicircle (half-circle) if its diameter is 36 cm. (4)
- 6.3 Determine the perimeter of a rectangular farm 4 km long and 3 km wide. (3)
- 6.4 Simplify the following expressions by making use of the special angles. Do NOT use a calculator.

(5)

In the right-angled triangle the hypotenuse is 250 cm and the other side is 153 cm. Determine the third side.

(4)

[24]

TOTAL: 100

MATHEMATICS N1

FORMULA SHEET

Rectangle: Perimeter =
$$2(l + b)$$

Area = $l \times b$

Square: Perimeter =
$$4a$$

Area = a^2

Triangle: Perimeter =
$$a + b + c$$

Area = $\frac{1}{2}b \times h$

Rectangular prism:
Volume =
$$l \times b \times h$$

Right triangular prism:
Volume =
$$\frac{1}{2}b \times h \times l$$

Cube: Volume =
$$a^3$$

Right pyramid:
Volume =
$$\frac{1}{3}$$
(base area × h)

Area =
$$\frac{\pi}{4}$$
 (major axis × minor axis)

Circle: Circumference =
$$\pi D$$
 or $2\pi r$
Area = $\frac{\pi D^2}{4}$ or πr^2

Cylinder: Volume =
$$\frac{\pi D^2}{4} \times h$$
 or $\pi r^2 h$

Cone: Volume =
$$\frac{\pi D^2}{4} \times \frac{h}{3}$$
 or $\frac{\pi r^2 h}{3}$

Annulus:
$$A = \pi (R^2 - r^2)$$

Reghoek: Omtrek =
$$2(l + b)$$

Area = $l \times b$

Vierkant: Omtrek =
$$4a$$

Area = a^2

Driehoek: Omtrek =
$$a + b + c$$

Area = $\frac{1}{2}b \times h$

Reghoekige prisma:
Volume =
$$l \times b \times h$$

Regte driehoekige prisma:
Volume =
$$\frac{1}{2}b \times h \times l$$

Kubus: Volume =
$$a^3$$

Volume =
$$\frac{1}{3}$$
(basisarea × h)

Area =
$$\frac{\pi}{4}$$
 (hoofas × neweas)

Sirkel: Omtrek =
$$\pi D$$
 of $2\pi r$

Area =
$$\frac{\pi D^2}{4}$$
 of πr^2

Silinder: Volume =
$$\frac{\pi D^2}{4} \times h$$
 of $\pi r^2 h$

Keël: Volume =
$$\frac{\pi D^2}{4} \times \frac{h}{3}$$
 of $\frac{\pi r^2 h}{3}$

$$ulus: A = \pi (R^2 - r^2)$$

Die reghoekige driehoek:

DHET

T1000(E)(M22)T

The theorem of Pythagoras: $c^2 = a^2 + b^2$

Die stelling van Pythagoras: $c^2 = a^2 + b^2$

Ratios of angle θ :

Verhoudings vir hoek θ :

$$\sin\theta = \frac{a}{c}$$

$$\sin\theta = \frac{a}{c}$$
 $\cos\theta = \frac{b}{c}$ $\tan\theta = \frac{a}{b}$

$$\tan\theta = \frac{a}{b}$$